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Hub covering problem initially introduced by 

Campbell [8]. He proposed mathematical models 

for single and multiple allocation versions of hub 

set covering and hub maximal covering problems. 

Campbell also proposed that origin node i and 

destination node j can be covered by hubs k, l in 

three ways:  

 

1- Total traveling costs (time or distance) from 

origin node i to destination node j (via origin node 

i to hub k, destination node j to hub l and traveling 

cost between the hub nodes with a discount 

factorߙ) does not exceed a specific value. 

 

2- Traveling costs (time or distance) for each of 

the links in the path from origin node i to 

destination j via hubs k and l do not exceed a 

specific value. 

 

3- Traveling costs (time or distance) from origin 

node i to hub k and from hub l to destination node 

j do not exceed a specific value.   

All of the existing models in the literature obey 

the above rules in which it is assumed that the 

covering radius is a fixed parameter in all cases 

and the decision maker cannot change its size 

whereas in many real world applications covering 

radius of facilities is one of decision variables 

which the decision maker should decide on the 

amount [9]. In many cases it is possible to save in 

costs of establishing extra hub nodes with a slight 

increase in the covering radius. For example in a 

transportation system by establishing depots with 

more capacity and equipping the existing 

facilities, farther customers can be served, which 

is equivalent to an increase in the covered area. 

The capability of an airport to service flights has a 

direct proportion to the number of runways, 

facilities and infrastructure which can be 

increased when necessary. Also in a 

telecommunication system the area covered by the 

radio waves depends on the strength of the waves 

emitted from the transmitter and with reinforcing 

the emitted waves, larger areas can be covered by 

the hub node. As specified in the aforementioned 

examples, with a slight increase in costs, larger 

covering radius is available and in many cases the 

increase in covering radius can prevent the 

superfluous costs of establishing new hubs. In 

order to capture this situation two types of costs 

are considered for a hub node, fixed costs of 

developing hubs and the covering cost which is 

proportional to the selected covering radius for the 

hub node. 

Facility location decisions are mainly strategic 

and long term. This results a considerable 

uncertainty in the parameters of location 

problems[10]. For example as time goes on, the 

amount of supply and demand varies in origin and 

destination nodes, moreover transportation costs 

among nodes can change due to causes like 

depreciation of the fleet, increase in fuel cost or 

using from cheaper facilities in the fleet. Multi-

period consideration of the problem provides the 

capability for the model to establish new facilities, 

close some of the existing facilities and some 

variations in the location of current facilities in 

each period, proportional to changes of the 

parameters. From a point of view, dynamic 

facility location problems can be divided in to two 

categories. The first category consists of problems 

in which the number of facilities is an exogenous 
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factor. Some of them like [11] specify total 

number of facilities in the planning horizon and 

number of facilities in each period should be 

determined by the model. Some of the authors 

such as [12, 13] assumed a fixed number of 

facilities that can be relocated at the end of each 

period during the planning horizon. The second 

category consists of the problems in which the 

number of facilities is an endogenous parameter 

and their number and location must be determined 

such that total costs are minimized. Contreras et 

al. considered the dynamic hub location problem 

in which the capacity of hub nodes is unlimited 

and proposed a mixed integer nonlinear model 

[14]. The authors assumed that establishing hub 

nodes is costly while their closure contains a 

profit which is the result of releasing some 

resources in closed hubs. Also Taghipourian et al. 

considered virtual hub location problem in 

dynamic conditions [15]. The authors assumed 

closed hubs to be costly as well as the established 

hubs in each period. Hub covering problem 

discussed here belongs to the second category. 

Existing models for hub covering problem are 

static and the dynamic model proposed in this 

paper integrates the concept of previous dynamic 

models by considering both cost and benefit for 

closed hubs. More realistic approach to the 

problem arises with more scrutiny on the structure 

of facilities. Facilities in a hub can be categorized 

in to two types: static and movable facilities. 

While static facilities remain useless when a hub 

is closed moving facilities can be transferred to 

newly developed hubs and cause savings if 

needed. For example in a hub airport some 

infrastructure facilities like building, watchtower 

and runways are static facilities and facilities like 

airport staff are moving facilities and transferring 

them can cause savings in employment and 

education costs. It is assumed that moving 

facilities released from closed hubs are usable in 

only one of newly established hubs in the same 

period. The saving associated to these movements 

is subtracted from the total costs of the period.  

Kara and Tansel introduced a single allocation 

hub covering model and provided a proof for NP-

hardness of the problem [16]. They also proposed 

three linearized versions for hub set covering 

problem. Also Wagner proposed a new 

mathematical model for hub set covering problem 

[17]. Tan and Kara investigated  hub covering 

problems in cargo delivery systems of turkey and 

introduced the reputable Turkish data set [18]. Qu 

and Weng used path relinking approach for 

solving hub maximal covering problems [19]. 

Also Calık et al. studied single allocated hub 

covering problem under the incomplete hub 

network assumption [20]. They presented an 

effective heuristic based on the taboo search to 

solve the problem. Mohammadi et al. considered 

hub covering problem with congestion in the 

network and modeled the hubs as M/M/c queue 

model [21]. The authors proposed an Imperialist 

Competitive Algorithm to solve the proposed 

model. Also Mohammadi et al. studied a 

capacitated single allocation hub covering 

problem and proposed a mathematical model for 

the problem. To solve the problem in a reasonable 

computational time, they proposed a modified GA 

and a shuffled frog algorithm which perform 

satisfactorily [22]. Karimi and Bashiri considered 

hub set covering and maximal covering problems 
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with a different coverage type and proposed two 

heuristics for the problem [23]. The authors 

applied the proposed models and the heuristics on 

the data based on Iranian hub airports and Turkish 

dataset. Fazel Zarandi et al. considered hub 

covering problem with backup coverage in which 

a node will be covered if there are at least Q 

possible routes to satisfy its demand. Also to 

enforce dispersion in hub positions, a lower bound 

is assumed for the distance between the hub nodes 

[24]. Zarei et al. proposed two mathematical 

formulations for a hub location problem with 

multi level capacities in which direct assignment 

between the non-hub noedes ia allowed [25].  

Considering the above explanations, major 

contributions of the paper to the hub location 

literature are:  

(1) introducing a hub covering problem in which 

the covering radius of each hub node is a 

decision variable and in a more realistic 

approach the covering costs are proportional 

to the covered area by the hub node; therefore 

the proposed model balances between the 

establishment costs of the hub nodes and their 

covering costs.  

(2) Similar to the real world situations, 

parameters of the problem are allowed to be 

changed periodically. To calculate the 

benefits and costs from the closed hubs in 

each period simultaneously, the equipment in 

a hub are divided to static and movable 

facilities. 

The proposed dynamic formulation determines 

established hubs in each period, their covering 

radius, allocates non-hub nodes to the hubs and 

determines closed hubs in each period such that 

total costs are minimized. 

The rest of this paper is organized as follows. 

Initially in section 2.1 we provide a mathematical 

model for the proposed problem and due to 

complexity of the aforementioned problem, in 

section 2.2 a dynamic genetic algorithm is 

proposed which is capable of achieving 

appropriate solutions in a reasonable time. 

Computational results of implementing proposed 

mathematical model and proposed genetic 

algorithm on experimental problems are presented 

in section 3. Finally conclusions and some 

guidelines for future study are presented in section 

4. 

 

2.1- Proposed Mathematical Model 

It is supposed that	ܰ ൌ ሼ1,2, … , ݊ሽ is the set of 

supply and demand nodes in the network. Each of 

the nodes is a potential location for establishing 

hubs. i is the index for supply nodes and j is the 

index for demand nodes, k and l are indices for 

hub nodes and t is the index for periods. In 

addition it is supposed that the costs matrix is 

symmetric, soܿ௜௝ ൌ ௝ܿ௜. The connection between 

each pair of the origin-destination (O/D) nodes is 

available only through the hubs. There is no 

limitation on the capacity of Hub nodes and they 

are completely interconnected, hence for 

connecting each origin to its destination the flow 

passes through one or two hub nodes. Each node 

can be connected to only one hub. Each hub node 

contains two kinds of costs: fixed establishing 

cost and covering cost. Covering costs of a hub 

are proportional to its covering radius and the 

covering radius of the hub equals to the farthest 
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node covered by the hub. Considering the use of 

special facilities between the hub nodes, discount 

factorߙሺ0 ൑ ߙ ൑ 1ሻ is used. For a pair of O/D 

nodes in a period, total transportation costs equals 

to sum of transportation costs from origin i to hub 

k, hub k to hub l considering discount factorߙ and 

hub l to destination j. proposed mixed integer 

model for each period of planning horizon 

determines established hubs, closed hubs, 

covering radius of a hub node and allocated nodes 

to each of the hubs. Although there are simpler 

formulations for hub covering problem such as the 

one proposed by Karimi and Bashiri [23], here we 

use the formulation proposed in [21] for the sake 

of clarity. Model parameters are: 

(1)ܿ௧௜௝
௞௟  : Is the present value of total transportation 

cost for travelling from origin i to destination j via 

hubs k and l in period t. (2)݁ܿ௧௞  : Is the present 

value for fixed cost of establishing a hub in node k 

and in period t. (3)݂ݎ௧௞ : Is the present value of 

covering cost of hub at node k in period t. (4)ܿܿ௧௞ 

: Is the present value for costs of closing a hub at 

node k in period t including both static and 

movable facilities. (5)݉ݏ௧ : Is the present value of 

the benefits from movable facilities in a closed 

hub to be used in a newly established hub in 

period t. (6)݀௜௞ : Is the distance from node i to 

hub k and (7)	ܯ: a big number. 

The set of decision variables in the model are: 

௧௜௝ݔ(1)
௞௟  : A binary decision variable which is one if 

nodes i, j are connected via hubs k, l in period t 

and otherwise equals 0.  ሺ2ሻݕ௧௜௞ : A binary 

variable which is one if node i is connected to hub 

k in period t and otherwise it equals 0. (3)ݎ௧௞ : is 

the covering radius of node k in period t. (4)݌௧௞ : 

Is a binary variable which is one if a new hub is 

established in node k in period t and otherwise 

equals 0. (5)ݍ௧௞ : Is a binary variable which is one 

if the hub existing in node k is closed in period t 

and otherwise equals 0. (6)ݖ௧: Is the minimum of 

∑ ௧௞௞݌  and∑ ௧௞௞ݍ . 

While closing a hub always incurs closure costs, 

the savings from the closing occur only when 

there is a possibility to use the released movable 

facilities in newly established hubs. In order to 

determine number of hub nodes which facilities 

can be moved to other hubs, following lemma is 

proposed. It is assumed that after a hub is closed, 

there is the possibility to transfer its movable 

facilities to one of the newly established hubs in 

the same period and they are not capable of 

buffering for subsequent periods.   

Lemma .Number of possible movements in each 

period equals to the minimum of total established 

hubs (∑ ௧௞௞݌ ) and total closed hubs in that period 

(∑ ௧௞௞ݍ ). 

Proof .Generally in each period there are three 

possible situations. a) Total number of established 

hubs is greater than the total number of closed 

hubs (∑ ௧௞௞݌ ൐ ∑ ௧௞௞ݍ ). In this case it is possible 

to use the released movable facilities from all of 

the closed hubs. Hence number of movements 

will be∑ ௧௞௞ݍ . b) Number of established hubs 

equals to the number of closed hubs (∑ ௧௞௞݌ ൌ

∑ ௧௞௞ݍ ). In this case movable facilities from each 

of closed facilities can be allocated to one of the 

established facilities. Number of movements will 

be ∑ ௧௞௞ݍ  or∑ ௧௞௞݌ . c) Number of established 

hubs is less than the number of closed hubs 

(∑ ௧௞௞݌ ൏ ∑ ௧௞௞ݍ ). Despite extra supply, the 

demand is limiting and it is possible to use 

moving facilities from ∑ ௧௞௞݌  of closed hubs in 
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newly established hubs. Considering it is 

impossible to use moving facilities from ∑ ௧௞௞ݍ െ

∑ ௧௞௞݌  of closed hubs, no saving will be taken in 

to account. 

Considering the above explanations the proposed 

mathematical model is as follows.  

 

	݊݅ܯ  ∑ ∑ ∑ ∑ ∑ ܿ௧௜௝
௞௟ ௧௜௝ݔ

௞௟ ൅ ∑ ∑ ݁ܿ௧௞݌௧௞௞௧௝௟௞௜௧ ൅ ∑ ∑ ௧௞௞௧ݎ௧௞ݎ݂ ൅ ∑ ∑ ܿܿ௧௞ݍ௧௞௞௧ െ ∑ ௧௧ݖ௧ݏ݉  (1)

 ∑ ∑ ௧௜௝ݔ
௞௟

௟௞ ൌ 1																		 								∀݅, ݆, (2) ݐ

௧௜௝ݔ2 
௞௟ ൑ ௧௝௟ݕ ൅ 										௧௜௞ݕ 								∀݅, ݆, ,ݐ ݇, ݈ (3)

௧௜௞ݕ   ൑ 																						௧௞௞ݕ 									∀݅, ,ݐ ݇ (4)

 ∑ ௧௜௞௞ݕ ൌ 1																							 									∀݅, (5) ݐ

௧௞ݎ  ൒ ݀௜௞ݕ௧௜௞																				 											∀݅, ,ݐ ݇ (6)

௧௞݌  െ ௧௞ݍ ൌ ௧௞௞ݕ െ ,݇∀						௧ିଵ௞௞ݕ ݐ ൐ 1 (7)

௧ݖ  ൌ minሺ∑ ௧௞௞݌ , ∑ ௧௞௞ݍ ሻ								∀(8) ݐ

௧௜௝ݔ 
௞௟ , ,௧௜௞ݕ ,௧௞݌ ௧௞ݍ ∈ ሼ0,1ሽ, ,௧௞ݎ ௧ݖ ൒ 0		& ݎ݁݃݁ݐ݊݅ ∀݅, ݆, ,ݐ ݇, ݈ (9)

 

Expression (1) is the objective function of the 

proposed model which is aimed at minimizing 

total costs. The first part of the objective function 

considers transportation costs form origin node i 

to destination j via hubs k and l. Second part of 

the objective function considers hub establishment 

cost. Covering cost of each hub in each period is 

the third part of the objective function. Costs 

associated with closing hub nodes in each period 

is the fourth part of the objective function and the 

fifth part is the saving that comes from 

transferring movable facilities from closed hubs to 

the established hubs. Constraints (2) guarantee 

that the connection between each O/D pair is 

trough one or two hubs. Constraints (3) ensure 

that in each period, the path from i to j via hubs k 

and l is available if both origin node i and 

destination node j are respectively connected to 

hubs k and l. constraints (4) ensure that in each 

period, node i can be connected to node k if it is 

set as a hub.  

 

Constraints (5) ensure that each node allocates to 

only one hub. Covering radius of a hub equals to 

distance between the hub and the farthest 

allocated node to the hub which the amount is 

calculated from equation (6) for each node in each 

period. With the assistance of constraints (7) for a 

period, if a hub is newly established in a node, 

binary variable p୲୩ equals one and binary variable 

q୲୩ equals zero and if the existing hub in a node is 

closed, binary variable q୲୩ equals one and binary 

variable p୲୩ equals zero. Otherwise both of the 

variables will equal zero. Considering lemma 1 

total number of facility movements in each period 

is calculated from constraints (8). Expression (9) 

specifies variables x୲୧୨
୩୪ , y୲୧୩, p୲୩, q୲୩ as binary 

variables and other variables as integer and 

nonnegative variables. 

Considering nonlinearity of equation (8), 

following set of constraints is proposed. Equation 

(10) introduces virtual variable ݒ௧ as subtraction 
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of∑ ௧௞௞ݍ  from∑ ௧௞௞݌ . Considering equation (15), 

if the desired minimum is∑ ௧௞௞ݍ  , hence ݒ௧is 

nonnegative, we require ݒ௧
,  being equal to zero but 

if the desired minimum is∑ ௧௞௞݌ , hence ݒ௧is 

negative, we require ݒ௧
, being equal toݒ௧. With the 

aid of constraints (11) and (12) binary variable ݓ௧ 

will be one if  ݒ௧ is negative and if ݒ௧is 

nonnegative ݓ௧ equals zero. Constraints (13) and 

(14) together provide situation in which ifݓ௧ ൌ

1then ݒ௧
, ൑ ௧ݓ௧ and ifݒ ൌ 0  thenݒ௧

, ൑ 0. With the 

assistance of these constraints an upper bound for 

variable ݖ௧ is obtained and considering the utility 

of the maximum amount of ݖ௧ in objective 

function, these variables will attain their upper 

bound.  

 

 

௧ݒ  ൌ ∑ ௧௞௞݌ െ ∑ ௧௞௞ݍ  ݐ∀																				
(10)

௧ݒ  ൒ െݓܯ௧																																					∀(11) ݐ

௧ݒ  ൏ ሺ1ܯ െ 														௧ሻݓ (12) ݐ∀														

,ݒ  െ ሺ1ܯ െ ௧ሻݓ ൑ 					௧ݒ (13) ݐ∀														

௧ݒ 
, ൑ (14) ݐ∀																																									௧ݓܯ

௧ݖ ൌ ௧ݒ
, ൅ ∑ ௧௞௞݌ െ (15)  ݐ∀																				௧ݒ

௧ݓ  ∈ ሼ0,1ሽ, ,௧ݒ ௧ݒ
, ൒ 0					 (16) ݐ∀														

 

In order to linearize the model it is possible to use 

constraints (10) to (16) instead of (8). 

 

2.2- Proposed Genetic Algorithm 

Kara and Tansel proved the NP-Hardness of hub 

covering problems [16]; hence our problem which 

is a more complex form of hub covering problem 

will be NP-Hard respectively. Due to the 

complexity of the problem, high computational 

time is needed to attain optimal solution. In order 

to get suitable solutions in a reasonable 

computational time a Genetic Algorithm (GA) is 

proposed for the investigated problem. GA is a 

metaheuristic algorithm based on Darwinians 

theory of evolution first introduced by Holland 

[26]. GA transmits a set of solutions for 

consecutive iterations, called population, in each 

iteration some new individuals are added to the 

population and some individuals with lower utility  

 

will be eliminated from the population. This goes 

on until a specific criterion is met which is called 

stopping criteria.  

Compared with the classic GA, this paper 

proposes a schema for the problem, develops 

genetic operators based on the chromosome 

structure, introduces a dynamic immigration 

operator and two stopping criterions for the 

algorithm. The following subsections describe the 

main features for the proposed genetic algorithm.    

 

2.2.1- Chromosome Structure 

One of the most important specifications of the 

GA which has a great effect on the effectiveness 

of algorithm is the chromosome structure and this 

structure should capture all the features of the 

problem. Proposed structure is presented in Fig.1. 

The status of the nodes should be specified in all 

periods of the planning horizon, hence total 
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dynamic mutation operator increases the number 

of changes in a selected chromosome for mutation 

along with increasing the number of iterative 

solutions. Number of genes that are remodeled in 

a mutant is presented in (17). 

 ݊݉ ൌ

ە
ۖ
۔

ۖ
ቒۓ

௡௡௢ௗ௘

ହ
ቓ ݏܫ	݂݅		 ൏

௠௔௫௜௧

ଷ

ቒ௡௡௢ௗ௘
ଷ

ቓ ܵܫ	݂݅		 ൏
௠௔௫௜௧

ଶ

ቒ
௡௡௢ௗ௘

ଶ
ቓ ܵܫ	݂݅	 ൐

௠௔௫௜௧

ଶ
	

 (17)

In this equation ݊ݎܽݒ is the number of supply and 

demand nodes, ݏܫ is the number of iterative 

solutions in which the best solution found by the 

algorithm remains unchanged and ݉ܽݐ݅ݔ is the 

maximum number of iterations. 

The third operator introduced here is called 

immigration. It is supposed that there are some 

immigrants to the society in each period. In real 

world situation alongside with the economic and 

scientific growth of a society, general tendency of 

the people from other populations increases to 

immigrate to the society, the designed dynamic 

immigration operator similarly increases rate of 

immigration to the society with increasing the 

probability of achieving the global optima, which 

the sign is remaining the best solution ever found 

unchanged for consecutive iterations. Increasing 

the rate of immigrants to the society like mutation 

operator increases the capability of algorithm to 

escape from local optima. Similar to initial 

population, immigrants are produced randomly 

and the rate of immigration is presented in 

equation (18). 

 

௣ܯܫ  ൌ
ூௌ

௡ುೀು
 (18)

In this equation	ܵܫ is the number of consecutive 

iterations in which the best solution remains 

unchanged, ݊௉ை௉is the number of individuals in 

the population and ܯܫ௣ is the rate of immigration.  

 

2.2.5- Stopping criteria 

Various criteria to stop GA have been introduced 

heretofore. Maximum number of iterations is one 

the most widely used stopping criteria. Due to the 

solution space of the problem in some cases, the 

algorithm reaches the optimum solution in primal 

iterations and remains unchanged until the last 

iteration. There are two possibilities; first the 

algorithm is trapped in a locally optimal solution. 

In this case, as described in 2.2.4, the designed 

algorithm will try to escape local optima with 

increasing the severity of search in solution space 

with the aid of intensifying the number of 

permutations in a mutant chromosome and also 

increasing the rate of migration to the population. 

Second possibility is that the algorithm has 

reached optimum solution; in this case it is ideal 

to stop the algorithm immediately. With the aim 

of parsimony in computational time for the 

problems in which the optimal solution is 

achieved rapidly, another stopping criterion is 

utilized alongside with maximum iterations. 

Provided that the best solution remains unchanged 

for݉ܽ݉ݑ݉݅ݔ	2/ݏ݊݋݅ݐܽݎ݁ݐ݅, the algorithm will 

be terminated. 

To aggregate the above explanations pseudo 

codes for the proposed GA is presented in Fig.4. 
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problems with flexible covering radius versus 

TCR and LCR cases results from the balance 

between the hubs establishment costs and 

covering costs.  

 

Tab. 1. Effects of the flexible covering radius on the designed network 

 Fixed covering radii Flexible covering radii 

n Type 
radi

i 
Hub nodes Cost 

Max– 

radii 
Hub nodes Cost 

10 TCR 
24

3 
1,3,6,8,10 88261 

701 6 77721 

10 LCR 
48

7 
1,3,6,8 81479 

15 TCR 
24

7 
1,3,6,8,10,12 124857 

671 1,3,6,10 
12061

4 
15 LCR 

49

5 
1,3,5,6,12 121681 

20 TCR 
23

9 
1,3,4,5,6,10,12,16,20 181796 

744 1,3,6,11,19,20 
16385

7 
20 LCR 

47

7 
1,3,4,6,12,16,19,20 180457 

25 TCR 
25

2 
1,3,5,6,7,13,16,17,20,25 276792 

551 3,6,16,19,20,25 
24702

2 
25 LCR 

50

4 
1,3,6,7,17,19,20,21,25 266122 

 

3.2- Experimental Problems 

To compare the performance of the proposed GA 

with results of the mathematical model some 

numerical examples are required. In the designed 

problems, fixed cost of establishing hubs, follows 

uniform distribution in range [7000, 12000] and 

the saving that comes from the closure of hubs has 

a uniform distribution in range [4000, 7000], 

considering that the costs are assumed to be 

dynamic, these costs change with rate 1 ൅ α 

periodically in which	α has a uniform distribution 

in the interval [-0.05, 0.15]. Closure costs are 

uniformly distributed in the range of [1000, 4000].  

Covering costs are a function of the distances 

between the nodes. Distances have uniform 

distribution in range [33, 99] and the covering 

cost initially is the distance multiplied to 10. 

Similar to the transportation costs these costs 

change periodically with the rate of1 ൅ γ in which 

γis uniformly distributed in [-0.2, 0.8]. Numerical 

experiments have 5, 10, 15, 20, 30, 40, 50, 60, 70, 

80, 100 nodes. For each size of the problem 

discount factor α equals to 0.3, 0.6, 0.9 and 
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number of periods (t) changes between 2, 3 and 4. 

Parameters tuning in the proposed GA results in: 

population size is set 200, maximum number of 

iterations 250, crossover percentage 0.85 and 

mutation percentage 0.1. The rest of the required 

parameters will be tuned by the algorithm as 

illustrated before. The experiments were done on 

a system with 4 GB of RAM and core i5 CPU. 

Optimal solutions to the problems were found by 

GAMS 22.2 using CPLEX solver and the 

proposed GA was coded and ran with MATLAB 

R2011b.  

 

3.3- Performance of the Proposed GA 

The amount of objective function and the 

computational time for mixed integer model along 

with the proposed GA is presented in Table 2. For 

the problems with 20 nodes and more, the optimal 

solution was not obtainable even after 6000 

seconds. As shown in Table 2 for the problems of 

size 5, computational time to solve the problem 

optimally is less than the required time for the 

proposed GA,  

Although by increasing the problem size, 

computational time for optimal solution has an 

exponentially growth. Fig.5 delineates the growth 

in average computational time for the proposed 

mixed integer model versus the proposed GA in 

each of the experimental problems. This figure 

corroborates better performance of the proposed 

GA for medium and large size problems in the 

context of computational time.  

It is obvious from the table that for each size of 

the problem as the number of periods (t) increases 

computational time for GAMS and the proposed 

GA increases which is the result of increasing the 

complexity of the problem. Considering Table 2 

discount factor ߙ does not have a meaningful 

effect on the computational time whereas the 

amount of objective function increases with 

increasing the discount factor in most cases. Also 

the proposed GA shows a salient performance in 

the case of quality of the solution.  

For problems in which the optimal solution was 

found in a reasonable time, proposed GA reaches 

the optimum solution in all cases. As mentioned 

in 2.2.5, the proposed GA decides on some of the 

problem parameters such as the number of 

iterations alongside with its progress in 

consecutive generations. The last column of Table 

2 shows the number of iterations (It) in which the 

proposed GA reached the solution.  

As the number of nodes (n) increases, a slight 

increase in the number of iterations is sensible 

which results from the more complex structure of 

the problem. For the case of problems with 100 

nodes the algorithm approaches the upper bound 

of 200 iterations whereas for smaller problems, 

number of required iterations for the algorithm 

has a meaningful decrease which results in 

considerable saving in computational time.   
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 103504

 117315

 102745

 137170

roblem with. . 

 

GA 

ve 

e 
CPU(Sec)

6 60.45 

6 58.28 

7 87.54 

6 78.29 

1 78.52 

6 57.12 

6 54.29 

2 46.96 

8 85.47 

1 77.35 

2 75.45 

9 116.85

2 103.70

70 89.33 

8 80.14 

9 68.75 

0 55.75 

4 124.46

40 104.47

52 92.90 

56 168.38

00 153.92

  

) It. 

130 

127 

143 

129 

133 

135 

130 

113 

144 

130 

129 

152 

135 

119 

156 

134 

109 

167 

143 

128 

171 

160 
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n1 t2 α3 

GAMS GA 

n t α 

GAMS GA 

Objective 

value 
4CPU(Sec) 

Objective 

value 
CPU(Sec) 5It. 

Objective 

value 
CPU(Sec) 

Objective 

value 
CPU(Sec) It. 

  0.6 84009 1592.03 84009 33.37 128   0.9 - - 1540899 123.31 133 

  0.9 85651 1593.49 85651 28.63 112 70 2 0.3 - - 816489 91.79 144 

 4 0.3 108187 3698.35 108187 36.53 115   0.6 - - 948789 90.34 144 

  0.6 107708 3699.50 107708 37.36 119   0.9 - - 1048865 79.05 127 

  0.9 107708 3700.05 107708 33.79 109  3 0.3 - - 1085829 166.54 180 

20 2 0.3 - - 82997 19.23 108   0.6 - - 1383974 137.66 154 

  0.6 - - 91847 18.52 106   0.9 - - 1557740 110.27 126 

  0.9 - - 94303 19.82 114  4 0.3 - - 1125533 236.42 198 

 3 0.3 - - 123816 29.08 117   0.6 - - 1533438 221.29 184 

  0.6 - - 138235 26.17 106   0.9 - - 2078191 161.50 144 

  0.9 - - 143138 28.71 116 80 2 0.3 - - 1019915 120.68 157 

 4 0.3 - - 149148 37.48 117   0.6 - - 1205921 110.89 149 

  0.6 - - 164548 38.14 120   0.9 - - 1349050 93.82 128 

  0.9 - - 180081 36.47 116  3 0.3 - - 1255795 201.48 180 

30 2 0.3 - - 177775 27.71 112   0.6 - - 1611591 208.37 186 

  0.6 - - 194652 27.40 110   0.9 - - 2046308 161.96 153 

  0.9 - - 202176 27.29 110  4 0.3 - - 1432306 261.06 180 

 3 0.3 - - 263619 43.48 120   0.6 - - 1905039 288.90 199 

  0.6 - - 280087 43.25 122   0.9 - - 2413498 289.33 200 

  0.9 - - 303519 43.75 124 100 2 0.3 - - 1401816 240.66 186 

 4 0.3 - - 346700 57.09 125   0.6 - - 1776351 243.82 184 

  0.6 - - 392356 56.08 125   0.9 - - 2082965 170.72 139 

  0.9 - - 407596 53.39 119  3 0.3 - - 1730317 413.00 199 

40 2 0.3 - - 282178 44.91 133   0.6 - - 2308048 417.78 198 

  0.6 - - 322915 38.96 119   0.9 - - 2829832 381.54 198 

  0.9 - - 351033 37.60 115  4 0.3 - - 2129941 650.85 194 

 3 0.3 - - 422745 63.59 134   0.6 - - 2657675 517.93 199 

          0.9 - - 3607594 557.12 197 

1n: Number of nodes, 2t: Number of periods, 3 α: Discount factor, 4CPU: Computational time, 
5It: Number of iterations for the proposed GA 

 

4. Conclusion and Further Research Area 

In this paper we proposed a mathematical model 

for dynamic hub covering problem with flexible 

covering radius. The proposed model assumes that 

each hub node comprises of fixed and variable 

costs which the latter case is a function of the 

hubs’ covering radius.  Furthermore in order to 

increase the flexibility of the model so as to exert 

the changes in problem parameters, a dynamic 

model is proposed. With a more exquisite 

consideration, facilities in each hub are divided to 

movable and static and the saving that comes 

from the allocation of the released movable 

facilities to the needful established hubs in each 

period, is computed.  Considering the 

computational complexity of the problem, in 

which the optimal solution of medium and large 
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size problems was not attainable in a reasonable 

time, afterwards an effective GA is proposed to 

solve the problem. The proposed GA introduces 

the concept of dynamic migration to the 

population which alongside with the dynamic 

mutation operator improved the quality of the 

attained solutions. According to the computational 

results, the performance of proposed GA is salient 

and in all of the designed experiments in which 

the optimal solution was attainable in a reasonable 

time, GA’s solution equates to the optimal 

solution.  

The dynamic model proposed in this paper, 

considers the saving that results from the movable 

facilities to be the same for all of the hubs in a 

period. More interesting problem arises when the 

debated savings are variable for different hubs due 

to their size and other features. Flexible covering 

radius proposed in this paper like other existing 

models in the literature consider the covering 

radius to be rigid although in some real world 

cases like wireless communication networks as 

the consumer recedes from the transmitter, signal 

strength weakens slowly and at last the connection 

will be lost. The authors are working on this case 

in order to approximate the problem to real world 

situation. 
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