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KEYWORDS ABSTRACT

One of the basic assumptions in hub covering problems is
considering the covering radius as an exogenous parameter which
cannot be controlled by the decision maker. Practically and in many
real world cases with a slight increase in costs, to increase the
covering radii, it is possible to save the costs of establishing
additional hub nodes. Also change in problem parameters during the
planning horizon is one of the key factors causing the results of
theoretical models to be impractical in real world situations. To
dissolve this problem, in this paper a mathematical model for dynamic
single allocation hub covering problem is proposed in which the
covering radius of hub nodes is one of the decision variables. Also
Due to NP-Hardness of the problem and great computational time
required to solve the problem optimally, an effective genetic algorithm
with dynamic operators is proposed afterwards. Computational
results show the satisfying performance of the proposed genetic
algorithm in achieving satisfactory results in a reasonable time.

hub location problem,

dynamic hub covering problem,
flexible covering radius,
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© 2015 IUST Publication, IJIEPR, Vol. 26, No. 3, All Rights Reserved.

. proposed a quadratic model for hub median
1. Introduction

The concept of hub nodes arises when there are problems which was the first mathematical model

many origin-destination nodes in a transportation
network in order to use the economies of scale.
Hubs are nodes in which the flow from various
origins is gathered and after reorganization it is
dispatched to the destinations. Hub location
problem, first introduced by O'Kelly has many
applications in cargo delivery systems, airline

networks and telecommunication systems [1], he
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for hub location problems [2]. The objective
function in this model is the minimization of total
flow costs and in other works such as [3-5] some
linearized versions of the problem are proposed.
Hub location problems are generally classified in
to three sub categories: hub center, hub median
and hub covering problems. Considering the point
that hub covering problem is investigated in this
paper, the interested reader is referred to review
papers like [6, 7] for more study on the two

remaining sub categories of hub location problem.
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Hub covering problem initially introduced by
Campbell [8]. He proposed mathematical models
for single and multiple allocation versions of hub
set covering and hub maximal covering problems.
Campbell also proposed that origin node i and
destination node j can be covered by hubs k, | in

three ways:

1- Total traveling costs (time or distance) from
origin node i to destination node j (via origin node
i to hub k, destination node j to hub | and traveling
cost between the hub nodes with a discount

factora’) does not exceed a specific value.

2- Traveling costs (time or distance) for each of
the links in the path from origin node i to
destination j via hubs k and | do not exceed a

specific value.

3- Traveling costs (time or distance) from origin
node i to hub k and from hub | to destination node
j do not exceed a specific value.

All of the existing models in the literature obey
the above rules in which it is assumed that the
covering radius is a fixed parameter in all cases
and the decision maker cannot change its size
whereas in many real world applications covering
radius of facilities is one of decision variables
which the decision maker should decide on the
amount [9]. In many cases it is possible to save in
costs of establishing extra hub nodes with a slight
increase in the covering radius. For example in a
transportation system by establishing depots with
more capacity and equipping the existing
facilities, farther customers can be served, which

is equivalent to an increase in the covered area.

The capability of an airport to service flights has a
direct proportion to the number of runways,
facilities and infrastructure which can be
increased  when necessary. Also in a
telecommunication system the area covered by the
radio waves depends on the strength of the waves
emitted from the transmitter and with reinforcing
the emitted waves, larger areas can be covered by
the hub node. As specified in the aforementioned
examples, with a slight increase in costs, larger
covering radius is available and in many cases the
increase in covering radius can prevent the
superfluous costs of establishing new hubs. In
order to capture this situation two types of costs
are considered for a hub node, fixed costs of
developing hubs and the covering cost which is
proportional to the selected covering radius for the
hub node.

Facility location decisions are mainly strategic
and long term. This results a considerable
uncertainty in the parameters of location
problems[10]. For example as time goes on, the
amount of supply and demand varies in origin and
destination nodes, moreover transportation costs
among nodes can change due to causes like
depreciation of the fleet, increase in fuel cost or
using from cheaper facilities in the fleet. Multi-
period consideration of the problem provides the
capability for the model to establish new facilities,
close some of the existing facilities and some
variations in the location of current facilities in
each period, proportional to changes of the
parameters. From a point of view, dynamic
facility location problems can be divided in to two
categories. The first category consists of problems

in which the number of facilities is an exogenous
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factor. Some of them like [11] specify total
number of facilities in the planning horizon and
number of facilities in each period should be
determined by the model. Some of the authors
such as [12, 13] assumed a fixed number of
facilities that can be relocated at the end of each
period during the planning horizon. The second
category consists of the problems in which the
number of facilities is an endogenous parameter
and their number and location must be determined
such that total costs are minimized. Contreras et
al. considered the dynamic hub location problem
in which the capacity of hub nodes is unlimited
and proposed a mixed integer nonlinear model
[14]. The authors assumed that establishing hub
nodes is costly while their closure contains a
profit which is the result of releasing some
resources in closed hubs. Also Taghipourian et al.
considered virtual hub location problem in
dynamic conditions [15]. The authors assumed
closed hubs to be costly as well as the established
hubs in each period. Hub covering problem
discussed here belongs to the second category.
Existing models for hub covering problem are
static and the dynamic model proposed in this
paper integrates the concept of previous dynamic
models by considering both cost and benefit for
closed hubs. More realistic approach to the
problem arises with more scrutiny on the structure
of facilities. Facilities in a hub can be categorized
in to two types: static and movable facilities.
While static facilities remain useless when a hub
is closed moving facilities can be transferred to
newly developed hubs and cause savings if
needed. For example in a hub airport some

infrastructure facilities like building, watchtower

and runways are static facilities and facilities like
airport staff are moving facilities and transferring
them can cause savings in employment and
education costs. It is assumed that moving
facilities released from closed hubs are usable in
only one of newly established hubs in the same
period. The saving associated to these movements
is subtracted from the total costs of the period.

Kara and Tansel introduced a single allocation
hub covering model and provided a proof for NP-
hardness of the problem [16]. They also proposed
three linearized versions for hub set covering
problem. Also Wagner proposed a new
mathematical model for hub set covering problem
[17]. Tan and Kara investigated hub covering
problems in cargo delivery systems of turkey and
introduced the reputable Turkish data set [18]. Qu
and Weng used path relinking approach for
solving hub maximal covering problems [19].
Also Calik et al. studied single allocated hub
covering problem under the incomplete hub
network assumption [20]. They presented an
effective heuristic based on the taboo search to
solve the problem. Mohammadi et al. considered
hub covering problem with congestion in the
network and modeled the hubs as M/M/c queue
model [21]. The authors proposed an Imperialist
Competitive Algorithm to solve the proposed
model. Also Mohammadi et al. studied a
capacitated single allocation hub covering
problem and proposed a mathematical model for
the problem. To solve the problem in a reasonable
computational time, they proposed a modified GA
and a shuffled frog algorithm which perform
satisfactorily [22]. Karimi and Bashiri considered

hub set covering and maximal covering problems
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with a different coverage type and proposed two
heuristics for the problem [23]. The authors
applied the proposed models and the heuristics on
the data based on Iranian hub airports and Turkish
dataset. Fazel Zarandi et al. considered hub
covering problem with backup coverage in which

a node will be covered if there are at least Q

possible routes to satisfy its demand. Also to

enforce dispersion in hub positions, a lower bound
is assumed for the distance between the hub nodes

[24]. Zarei et al. proposed two mathematical

formulations for a hub location problem with

multi level capacities in which direct assignment

between the non-hub noedes ia allowed [25].

Considering the above explanations, major

contributions of the paper to the hub location

literature are:

(1) introducing a hub covering problem in which
the covering radius of each hub node is a
decision variable and in a more realistic
approach the covering costs are proportional
to the covered area by the hub node; therefore
the proposed model balances between the
establishment costs of the hub nodes and their
covering costs.

(2) Similar to the real world situations,
parameters of the problem are allowed to be
changed periodically. To calculate the
benefits and costs from the closed hubs in
each period simultaneously, the equipment in
a hub are divided to static and movable
facilities.

The proposed dynamic formulation determines

established hubs in each period, their covering

radius, allocates non-hub nodes to the hubs and

determines closed hubs in each period such that
total costs are minimized.

The rest of this paper is organized as follows.
Initially in section 2.1 we provide a mathematical
model for the proposed problem and due to
complexity of the aforementioned problem, in
section 2.2 a dynamic genetic algorithm is
proposed which is capable of achieving
appropriate solutions in a reasonable time.
Computational results of implementing proposed
mathematical model and proposed genetic
algorithm on experimental problems are presented
in section 3. Finally conclusions and some
guidelines for future study are presented in section
4.

2.1- Proposed Mathematical Model

It is supposed that N = {1,2,...,n} is the set of
supply and demand nodes in the network. Each of
the nodes is a potential location for establishing
hubs. i is the index for supply nodes and j is the
index for demand nodes, k and | are indices for
hub nodes and t is the index for periods. In
addition it is supposed that the costs matrix is
symmetric, soc;; = ¢j;. The connection between
each pair of the origin-destination (O/D) nodes is
available only through the hubs. There is no
limitation on the capacity of Hub nodes and they
are completely interconnected, hence for
connecting each origin to its destination the flow
passes through one or two hub nodes. Each node
can be connected to only one hub. Each hub node
contains two kinds of costs: fixed establishing
cost and covering cost. Covering costs of a hub
are proportional to its covering radius and the

covering radius of the hub equals to the farthest
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node covered by the hub. Considering the use of
special facilities between the hub nodes, discount
factora(0 < a < 1) is used. For a pair of O/D
nodes in a period, total transportation costs equals
to sum of transportation costs from origin i to hub
k, hub k to hub | considering discount factora and
hub | to destination j. proposed mixed integer
model for each period of planning horizon
determines established hubs, closed hubs,
covering radius of a hub node and allocated nodes
to each of the hubs. Although there are simpler
formulations for hub covering problem such as the
one proposed by Karimi and Bashiri [23], here we
use the formulation proposed in [21] for the sake
of clarity. Model parameters are:

(l)cé‘ilj : Is the present value of total transportation
cost for travelling from origin i to destination j via
hubs k and | in period t. (2)ecy : Is the present
value for fixed cost of establishing a hub in node k
and in period t. (3)f71y : Is the present value of
covering cost of hub at node k in period t. (4)ccyy
: Is the present value for costs of closing a hub at
node k in period t including both static and
movable facilities. (5)ms; : Is the present value of
the benefits from movable facilities in a closed
hub to be used in a newly established hub in
period t. (6)d;; : Is the distance from node i to
hub k and (7) M: a big number.

The set of decision variables in the model are:
(1)xfilj : A binary decision variable which is one if
nodes i, j are connected via hubs k, | in period t
and otherwise equals 0. (2)¥:r : A binary
variable which is one if node i is connected to hub
k in period t and otherwise it equals 0. (3)ry : is
the covering radius of node K in period t. (4)pyy :

Is a binary variable which is one if a new hub is

established in node k in period t and otherwise
equals 0. (5)qyx : Is a binary variable which is one
if the hub existing in node K is closed in period t
and otherwise equals 0. (6)z;: Is the minimum of
Yk Dex andXy Ge-

While closing a hub always incurs closure costs,
the savings from the closing occur only when
there is a possibility to use the released movable
facilities in newly established hubs. In order to
determine number of hub nodes which facilities
can be moved to other hubs, following lemma is
proposed. It is assumed that after a hub is closed,
there is the possibility to transfer its movable
facilities to one of the newly established hubs in
the same period and they are not capable of
buffering for subsequent periods.

Lemma .Number of possible movements in each
period equals to the minimum of total established
hubs (3 pex) and total closed hubs in that period
Xk ex)-

Proof .Generally in each period there are three
possible situations. a) Total number of established
hubs is greater than the total number of closed
hubs QX Per > Yk 9ix)- In this case it is possible
to use the released movable facilities from all of
the closed hubs. Hence number of movements
will beY, qi. b) Number of established hubs
equals to the number of closed hubs Xy pi =
Yk Gex)- In this case movable facilities from each
of closed facilities can be allocated to one of the
established facilities. Number of movements will
be Dk G Ok Pik- ©) Number of established
hubs is less than the number of closed hubs
Ok Pk < Xk k). Despite extra supply, the
demand is limiting and it is possible to use

moving facilities from Y, py, of closed hubs in
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newly established hubs. Considering it is
impossible to use moving facilities from Y,; gy —

>k Pex of closed hubs, no saving will be taken in

Considering the above explanations the proposed

mathematical model is as follows.

to account.
Min ¥ ¥ Yk 2 X Cll'cll]xfll] + Xt Xk €CexPerc + Xt 2k fTerTee + Le Lk CCer Qe — Xt MStZ¢ (1
DISVEATES! Vi jit @
2x15 < Yeji + Veir Vi j,tk, 3)
Ytik < Ytk vi,t, k “4)
Dk Yeik =1 Vi, t (5)
Ttk = digVtik Vit k (6)
Ptk — dtk = Yerk — Ye-1ke  Vk, t>1 (7)
ze = min(Uk Pexc, X Gex) Yt ®)
xfilj,ytik, Pik Gex € 0,1}, 115, 2 = 0 & integer Vi, j, t k,l 9)

Expression (1) is the objective function of the
proposed model which is aimed at minimizing
total costs. The first part of the objective function
considers transportation costs form origin node i
to destination j via hubs k and I. Second part of
the objective function considers hub establishment
cost. Covering cost of each hub in each period is
the third part of the objective function. Costs
associated with closing hub nodes in each period
is the fourth part of the objective function and the
fifth part is the saving that comes from
transferring movable facilities from closed hubs to
the established hubs. Constraints (2) guarantee
that the connection between each O/D pair is
trough one or two hubs. Constraints (3) ensure
that in each period, the path from i to j via hubs k
and | is available if both origin node i and
destination node j are respectively connected to
hubs k and |. constraints (4) ensure that in each
period, node i can be connected to node K if it is

set as a hub.

Constraints (5) ensure that each node allocates to
only one hub. Covering radius of a hub equals to
distance between the hub and the farthest
allocated node to the hub which the amount is
calculated from equation (6) for each node in each
period. With the assistance of constraints (7) for a
period, if a hub is newly established in a node,
binary variable py equals one and binary variable
gtk equals zero and if the existing hub in a node is
closed, binary variable qy equals one and binary
variable py equals zero. Otherwise both of the
variables will equal zero. Considering lemma 1
total number of facility movements in each period
is calculated from constraints (8). Expression (9)

specifies variables Xglj,ytik, Ptk Qtk @S binary

variables and other variables as integer and
nonnegative variables.

Considering nonlinearity of equation (8),
following set of constraints is proposed. Equation

(10) introduces virtual variable v, as subtraction
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of Y @i fromY;, psi. Considering equation (15),
if the desired minimum is}, q;, , hence v;is
nonnegative, we require v; being equal to zero but
if the desired minimum isY), ps, hence vis
negative, we require v;being equal tov,. With the
aid of constraints (11) and (12) binary variable w,
will be one if v, is negative and if wv,is

nonnegative w; equals zero. Constraints (13) and

vy = Xk Pk — 2k ek vi
Ve = —Mw, vt
vy <M —wy) vt
v—MA—-w) < v, vt
vy < Mw, vt
ze =V, + XDk — Ut vt
wy €{0,1}, v, v, 20 vt

In order to linearize the model it is possible to use

constraints (10) to (16) instead of (8).

2.2- Proposed Genetic Algorithm

Kara and Tansel proved the NP-Hardness of hub
covering problems [16]; hence our problem which
is a more complex form of hub covering problem
will be NP-Hard respectively. Due to the
complexity of the problem, high computational
time is needed to attain optimal solution. In order
to get suitable solutions in a reasonable
computational time a Genetic Algorithm (GA) is
proposed for the investigated problem. GA is a
metaheuristic algorithm based on Darwinians
theory of evolution first introduced by Holland
[26]. GA transmits a set of solutions for
consecutive iterations, called population, in each
iteration some new individuals are added to the

population and some individuals with lower utility

(14) together provide situation in which ifw, =
1then v; < v, and ifw, = 0 thenv; < 0. With the
assistance of these constraints an upper bound for
variable z; is obtained and considering the utility
of the maximum amount of z; in objective
function, these variables will attain their upper

bound.

(10)

)]
(12)
(13)
(14)
(15)
(16)

will be eliminated from the population. This goes
on until a specific criterion is met which is called
stopping criteria.

Compared with the classic GA, this paper
proposes a schema for the problem, develops
genetic operators based on the chromosome
structure, introduces a dynamic immigration
operator and two stopping criterions for the
algorithm. The following subsections describe the

main features for the proposed genetic algorithm.

2.2.1- Chromosome Structure

One of the most important specifications of the
GA which has a great effect on the effectiveness
of algorithm is the chromosome structure and this
structure should capture all the features of the
problem. Proposed structure is presented in Fig.1.
The status of the nodes should be specified in all

periods of the planning horizon, hence total
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number of gens in a chromosome structure equals
to the multiplication of the number of nodes to the
number of periods. The first stratum of the
proposed structure determines number of the hub

which the node is allocated; so if the container of

Period 1 Period 2

a gene equals to its order it is set as a hub.
Considering the difficulty of implementing the
GA operators on first stratum, second stratum is

introduced in which hub nodes are determined.

Period 3 Period 4

1 4| 4 4 1 4112112 4 2

3 3 3 3 ] ) | § )

I efjo 1 jojo0of1rjpop1j]ao

L O I L O I !

Fig.1-Chromosome Structure

2.2.2- Initial Population

GA is a population based algorithm and
permanently transmits a set of individuals to
different iterations. Firstly it is necessary to
generate a set of solutions as initial population. To
emphasize the importance of the population size it
is noticeable that extra-large size of the initial
population results in trashy increase of
computational time and small size of the
population will cause the algorithm not achieving
to global optima. Population size is chosen as 200.
In order to create initial population in each period,
some of the nodes are selected as hubs and the

remaining nodes are allocated to nearest hub.

2.2.3- Selection Strategies

There are different methods to select parents for
implementing crossover and mutation. Here
roulette wheel method is used which was first
introduced by Goldberg [27]. In this method after
sorting all population members according to their
fitness, each one will be allocated a selection
probability which is proportional to its rank. In
this situation all the members of the population

have the chance to be selected, although the

chromosome with better fitness will have more

chance to be selected.

2.2.4- Genetic Operators

The operators in GA are tools for better search in
solution space. Reproduction of the individuals in
each iteration causes to add new individuals to the
population which the characteristics are their
parent’s  patrimony. This phenomenon is
presented in crossover operator. Scarcely and due
to tribulation in  structure, paucity of
chromosomes have salient differences with the
others. Similar to the illustrious role of mutation
in the human evolution this operator also is very
important for the genetic algorithm in salvation
from local optima. A phenomenon that many
human populations are faced with is the entrance
of some individuals to the population from other
populations which is called the immigration.
Proposed algorithm considers this social
phenomenon as another GA operator.

There are multiple methods for implementing
crossover. Here a modified version of single point
crossover is proposed. Considering the problem is
multi-period, implementing single-point crossover
might not be so suitable. For more proficiency in

each period single point crossover is implemented
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randomly. Second stratum of the chromosome is
used to do crossover. Fig.2 shows the
implementation of crossover on the second
stratum of a chromosome with four periods.

The second operator of GA is mutation. If the best
solution found by the algorithm remains the same
for consecutive iterations the algorithm might be
trapped in local optima. To escape this situation
mutation operator is instrumental. Like crossover,
second stratum of the chromosome is selected for

implementing mutation. Some of the gens in the

chromosome are selected randomly, if the selected
node is a hub it will be changed to a non-hub node
and if it is a non-hub node it will be changed to a
hub. Fig.3 demonstrates implementation of a
mutation with seven changes on a problem with
four periods. One of the possible occurrences is to
make a period without any hubs like the third
period in Fig.3; in this case the same numbers of
the genes are selected randomly and will be

changed to hub nodes.

eentifajojajalojojalojajojajaiojo[A[XO[A]0O/ A

Parent2fojolafolojafo[a[ofa]olola[o[a[3l0[0[1 1]

Parent 1 [ [0 [2352] 0] [0]2Z30[x] o] [@E£alolol1] [a[o¢fa[o1]

Paren12|0|0|§§0|0[ |1 Ogg! 0 1| @%0 1|0|1| lll_oiw

cidilylo/ajololo/ajalola[a[o[x|o[x]|alolo[x]1]

chiezfojo/alalojalojofajololxfofo/afrio[a]o[n]

Fig. 2- crossover on the second stratum of chromosome with four periods

LoJofofoelofufolefofojofoifoelo]ofufolofufol]

N A U O U S SR

Lol fofeloefufajrfofojojofoelelofojoJurfufol]

s [t JeJeaTu o e el oo ——eToelol1i 1o
N T A 0 A A A 1 i 0 W W

Lol forfoelofulalefofoloJofulov]ofololuvfufo]

Fig. 3 - mutation operator

Although increasing the number of changes in a

selected chromosome for mutation causes the

increment of computational time, more changes

provide better search in solution space. Proposed
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dynamic mutation operator increases the number
of changes in a selected chromosome for mutation
along with increasing the number of iterative
solutions. Number of genes that are remodeled in

a mutant is presented in (17).

§ maxit
] if Is < 3
maxit

2
maxit

2

[nnode
5

nnode

3
[nnode

2

| if1s <
| if 15 >

|

a7

In this equation nvar is the number of supply and
demand nodes, Is is the number of iterative
solutions in which the best solution found by the
algorithm remains unchanged and maxit is the
maximum number of iterations.

The third operator introduced here is called
immigration. It is supposed that there are some
immigrants to the society in each period. In real
world situation alongside with the economic and
scientific growth of a society, general tendency of
the people from other populations increases to
immigrate to the society, the designed dynamic
immigration operator similarly increases rate of
immigration to the society with increasing the
probability of achieving the global optima, which
the sign is remaining the best solution ever found
unchanged for consecutive iterations. Increasing
the rate of immigrants to the society like mutation
operator increases the capability of algorithm to
escape from local optima. Similar to initial
population, immigrants are produced randomly

and the rate of immigration is presented in

equation (18).
IS
IMp - npop (18)

In this equation IS is the number of consecutive
iterations in which the best solution remains
unchanged, npgpis the number of individuals in

the population and IM,, is the rate of immigration.

2.2.5- Stopping criteria

Various criteria to stop GA have been introduced
heretofore. Maximum number of iterations is one
the most widely used stopping criteria. Due to the
solution space of the problem in some cases, the
algorithm reaches the optimum solution in primal
iterations and remains unchanged until the last
iteration. There are two possibilities; first the
algorithm is trapped in a locally optimal solution.
In this case, as described in 2.2.4, the designed
algorithm will try to escape local optima with
increasing the severity of search in solution space
with the aid of intensifying the number of
permutations in a mutant chromosome and also
increasing the rate of migration to the population.
Second possibility is that the algorithm has
reached optimum solution; in this case it is ideal
to stop the algorithm immediately. With the aim
of parsimony in computational time for the
problems in which the optimal solution is
achieved rapidly, another stopping criterion is
utilized alongside with maximum iterations.
Provided that the best solution remains unchanged
formaximum iterations/2, the algorithm will
be terminated.

To aggregate the above explanations pseudo

codes for the proposed GA is presented in Fig.4.
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1.
v

Genetic Algorithm pseudo code

parameters setting
Set parameters: Maximum number of iterations (Maxit), Population
size (nPop),Crossover percentage (pc), Mutation percentage (pm)

Initialization

2. iterations
While Maxit iterations or
v Crossover

o
0
v' Mutation
0
o
0
mutant.
v Migration

immigrants.

Show result

SR

1
v" Create nPop individuals and evaluate theme.

of iterative solutions are not met do:

np
Select2(pc X fopj chromosomes using roulette wheel selection.

apply single point crossover for each period of the
Chromosome separately and evaluate the childes.

Select nPop X pm chromosomes randomly.
Calculate number of mutations (nm) using equation 17.
Apply nm random changes in each chromosome and evaluate the

Calculate migration rate (mr) using equation 18.
o Create mr X nPop chromosomes randomly and evaluate the
v aggregate childes, mutants and the immigrants
and select the nPop superior individuals.

Store the best individual as solution.

Exhibit the best solution ever found as the final solution.

Fig. 4- pseudo code for the proposed GA

3. Computational Results
3.1- Effects of the Flexible Covering Radius
To analyze effects of the proposed flexible
covering radius on the costs of the designed
network; some numerical examples are extracted
from the Turkish data set. The designed problems
are single — period with 10, 15, 20, 25 nodes and
in all of them discount factor a is set 0.5.
Computational results in table 1 compare the
designed hub network when there is a fixed
covering radius versus the proposed flexible
covering radius. For the fixed radius case two
types of covering radius are considered: loose
covering radii (LCR) in which the radii is equal to

the average distance among the nodes and tight

covering radii (TCR) which is assumed to be
(0.5LCR).

In the networks with a fixed covering radius LCR
case is expected to have less costs than the TCR
because of a greater covering radius and
consequently fewer established hubs. Considering
the computational results in table 1, the designed
networks with flexible covering radius have less
cost and fewer established hubs compared to the
classical models in both TCR and LCR cases. In
the designed networks with a flexible covering
radius, each of the established hubs has a
particular covering radius proportional to the
covered area. For example in the problem with 25
nodes, covering radius for the hub established in
node 19 is 94 while it is 551 for the hub in node

25. Fewer hub nodes and larger radii in the
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problems with flexible covering radius versus

TCR and LCR cases results from the balance

between the hubs establishment costs and

covering costs.

Tab. 1. Effects of the flexible covering radius on the designed network

Fixed covering radii

Flexible covering radii

radi

n Type Hub nodes
i
24

10 TCR ; 1,3,6,8,10
48

10 LCR 1,3,6,8
7
24

15 TCR . 1,3,6,8,10,12
49

15 LCR s 1,3,5,6,12
23

20 TCR 9 1,3,4,5,6,10,12,16,20
47

20 LCR . 1,3,4,6,12,16,19,20
25

25 TCR 5 1,3,5,6,7,13,16,17,20,25
50

25 LCR 1,3,6,7,17,19,20,21,25

88261

81479

124857

121681

181796

180457

276792

Max—
Cost . Hub nodes Cost
radii
701 6 77721
12061
671 1,3,6,10
4
16385
744 1,3,6,11,19,20
7
24702
551 3,6,16,19,20,25 5

266122

3.2- Experimental Problems

To compare the performance of the proposed GA
with results of the mathematical model some
numerical examples are required. In the designed
problems, fixed cost of establishing hubs, follows
uniform distribution in range [7000, 12000] and
the saving that comes from the closure of hubs has
a uniform distribution in range [4000, 7000],
considering that the costs are assumed to be
dynamic, these costs change with rate 1+ «

periodically in which a has a uniform distribution

in the interval [-0.05, 0.15]. Closure costs are
uniformly distributed in the range of [1000, 4000].
Covering costs are a function of the distances
between the nodes. Distances have uniform
distribution in range [33, 99] and the covering
cost initially is the distance multiplied to 10.
Similar to the transportation costs these costs
change periodically with the rate of1 + y in which
vis uniformly distributed in [-0.2, 0.8]. Numerical
experiments have 5, 10, 15, 20, 30, 40, 50, 60, 70,
80, 100 nodes. For each size of the problem

discount factor o equals to 0.3, 0.6, 0.9 and
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number of periods (t) changes between 2, 3 and 4.
Parameters tuning in the proposed GA results in:
population size is set 200, maximum number of
iterations 250, crossover percentage 0.85 and
mutation percentage 0.1. The rest of the required
parameters will be tuned by the algorithm as
illustrated before. The experiments were done on
a system with 4 GB of RAM and core i5 CPU.
Optimal solutions to the problems were found by
GAMS 222 using CPLEX solver and the
proposed GA was coded and ran with MATLAB
R2011b.

3.3- Performance of the Proposed GA

The amount of objective function and the
computational time for mixed integer model along
with the proposed GA is presented in Table 2. For
the problems with 20 nodes and more, the optimal
solution was mnot obtainable even after 6000
seconds. As shown in Table 2 for the problems of
size 5, computational time to solve the problem
optimally is less than the required time for the
proposed GA,

Although by increasing the problem size,
computational time for optimal solution has an
exponentially growth. Fig.5 delineates the growth
in average computational time for the proposed
mixed integer model versus the proposed GA in
each of the experimental problems. This figure

corroborates better performance of the proposed

GA for medium and large size problems in the
context of computational time.

It is obvious from the table that for each size of
the problem as the number of periods (t) increases
computational time for GAMS and the proposed
GA increases which is the result of increasing the
complexity of the problem. Considering Table 2
discount factor @ does not have a meaningful
effect on the computational time whereas the
amount of objective function increases with
increasing the discount factor in most cases. Also
the proposed GA shows a salient performance in
the case of quality of the solution.

For problems in which the optimal solution was
found in a reasonable time, proposed GA reaches
the optimum solution in all cases. As mentioned
in 2.2.5, the proposed GA decides on some of the
problem parameters such as the number of
iterations alongside with its progress in
consecutive generations. The last column of Table
2 shows the number of iterations (It) in which the
proposed GA reached the solution.

As the number of nodes (n) increases, a slight
increase in the number of iterations is sensible
which results from the more complex structure of
the problem. For the case of problems with 100
nodes the algorithm approaches the upper bound
of 200 iterations whereas for smaller problems,
number of required iterations for the algorithm
has a meaningful decrease which results in

considerable saving in computational time.
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4000 =
3500 —
3000 —
E 2500
o 2000
E
B 1500+
1000
500 - /
S 5 10 15 20 30 40 50 60 70 80 100
Legend: GAMS Solution —— GA Solution t : Number of periods S: Problem size
Fig. 5. Computational time growth
Tab. 2. Computational results
GAMS GA GAMS GA
n' o’  Objective . Objective 5 n t o Objective Objective
value CPU(Sec) value CPU(Sec) “It. value CPU(Sec) value CPU(Sec) It
5 0.3 10232 0.97 10232 12.75 121 0.6 - - 475376 60.45 130
0.6 10520 0.94 10520 14.18 135 0.9 - - 551486 58.28 127
0.9 10808 0.99 10808 12.82 123 4 03 - - 545107 87.54 143
0.3 19212 1.03 19212 14.66 100 0.6 - - 665146 78.29 129
0.6 19212 1.09 19212 14.56 100 0.9 - - 733251 78.52 133
0.9 19212 0.97 19212 14.59 100 | 50 2 03 - - 434556 57.12 135
0.3 23047 1.52 23047 18.53 100 0.6 - - 503656 54.29 130
0.6 23047 1.51 23047 18.30 100 0.9 - - 540452 46.96 113
0.9 22326 1.53 22326 21.04 103 3 03 - - 636508 85.47 144
10 0.3 29249 82.84 29249 14.61 100 0.6 - - 738361 77.35 130
0.6 29249 82.31 29249 14.48 100 0.9 - - 822362 75.45 129
0.9 29249 82.40 29249 14.31 100 4 03 - - 813389 116.85 152
0.3 41457 150.29 41457 20.05 100 0.6 - - 968432 103.70 135
0.6 41457 150.40 41457 20.37 102 0.9 - - 1068770 89.33 119
0.9 41457 150.39 41457 20.79 104 | 60 2 03 - - 602728 80.14 156
0.3 47137 345.95 47137 27.76 108 0.6 - - 716929 68.75 134
0.6 51320 346.04 51320 27.29 107 0.9 - - 810410 55.75 109
0.9 47137 346.09 47137 28.64 112 3 03 - - 874574 124.46 167
15 0.3 55751 737.18 55751 18.36 101 0.6 - - 1035040 104.47 143
0.6 55751 738.28 55751 18.24 102 0.9 - - 1173152 92.90 128
0.9 55751 739.38 55751 18.37 107 4 03 - - 1027456 168.38 171
0.3 80985 1593.28 80985 27.15 109 0.6 - - 1371700 153.92 160
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GAMS GA GAMS GA

n' £ o Objective 4 Objective 5 n t o Objective Objective
value CPU(Sec) CPU(Sec) It value CPU(Sec) value CPU(Sec) It
0.6 84009 1592.03 84009 33.37 128 0.9 - - 1540899 123.31 133
0.9 85651 1593.49 85651 28.63 112 | 70 2 03 - - 816489 91.79 144
4 03 108187 3698.35 108187 36.53 115 0.6 - - 948789 90.34 144
0.6 107708 3699.50 107708 37.36 119 0.9 - - 1048865 79.05 127
09 107708 3700.05 107708 33.79 109 3 03 - - 1085829 166.54 180
20 2 03 - - 82997 19.23 108 0.6 - - 1383974 137.66 154
0.6 - - 91847 18.52 106 0.9 - - 1557740 110.27 126
0.9 - - 94303 19.82 114 4 03 - - 1125533 236.42 198
3 03 - - 123816 29.08 117 0.6 - - 1533438 221.29 184
0.6 - - 138235 26.17 106 0.9 - - 2078191 161.50 144
0.9 - - 143138 28.71 116 | 80 2 03 - - 1019915 120.68 157
4 03 - - 149148 37.48 117 0.6 - - 1205921 110.89 149
0.6 - - 164548 38.14 120 0.9 - - 1349050 93.82 128
0.9 - - 180081 36.47 116 3 03 - - 1255795 201.48 180
30 2 03 - - 177775 27.71 112 0.6 - - 1611591 208.37 186
0.6 - - 194652 27.40 110 0.9 - - 2046308 161.96 153
0.9 - - 202176 27.29 110 4 03 - - 1432306 261.06 180
3 03 - - 263619 43.48 120 0.6 - - 1905039 288.90 199
0.6 - - 280087 43.25 122 0.9 - - 2413498 289.33 200
0.9 - - 303519 43.75 124 | 100 2 03 - - 1401816 240.66 186
4 03 - - 346700 57.09 125 0.6 - - 1776351 243.82 184
0.6 - - 392356 56.08 125 0.9 - - 2082965 170.72 139
0.9 - - 407596 53.39 119 3 03 - - 1730317 413.00 199
40 2 03 - - 282178 4491 133 0.6 - - 2308048 417.78 198
0.6 - - 322915 38.96 119 0.9 - - 2829832 381.54 198
0.9 - - 351033 37.60 115 4 03 - - 2129941 650.85 194
3 03 - - 422745 63.59 134 0.6 - - 2657675 517.93 199
0.9 - - 3607594 557.12 197

'n: Number of nodes, ’t: Number of periods, * a: Discount factor, ‘CPU: Computational time,
*It: Number of iterations for the proposed GA
the changes in problem parameters, a dynamic

4. Conclusion and Further Research Area model is proposed. With a more exquisite

In this paper we proposed a mathematical model
for dynamic hub covering problem with flexible
covering radius. The proposed model assumes that
each hub node comprises of fixed and variable
costs which the latter case is a function of the
hubs’ covering radius. Furthermore in order to

increase the flexibility of the model so as to exert

consideration, facilities in each hub are divided to
movable and static and the saving that comes
from the allocation of the released movable
facilities to the needful established hubs in each
period, is computed. Considering  the
computational complexity of the problem, in

which the optimal solution of medium and large
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size problems was not attainable in a reasonable
time, afterwards an effective GA is proposed to
solve the problem. The proposed GA introduces
the concept of dynamic migration to the
population which alongside with the dynamic
mutation operator improved the quality of the
attained solutions. According to the computational
results, the performance of proposed GA is salient
and in all of the designed experiments in which
the optimal solution was attainable in a reasonable
time, GA’s solution equates to the optimal
solution.

The dynamic model proposed in this paper,
considers the saving that results from the movable
facilities to be the same for all of the hubs in a
period. More interesting problem arises when the
debated savings are variable for different hubs due
to their size and other features. Flexible covering
radius proposed in this paper like other existing
models in the literature consider the covering
radius to be rigid although in some real world
cases like wireless communication networks as
the consumer recedes from the transmitter, signal
strength weakens slowly and at last the connection
will be lost. The authors are working on this case
in order to approximate the problem to real world

situation.
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